
SYNTHESIS AND DEGRADATION OF PORPHYRINS

BY

Dr. Samy Ali Hussein Aziza **Professor of Biochemistry and Clinical Biochemistry Faculty of Veterinary Medicine**, Moshtohor, Benha University, Egypt. E.Mail:Samyaziza@yahoo.com

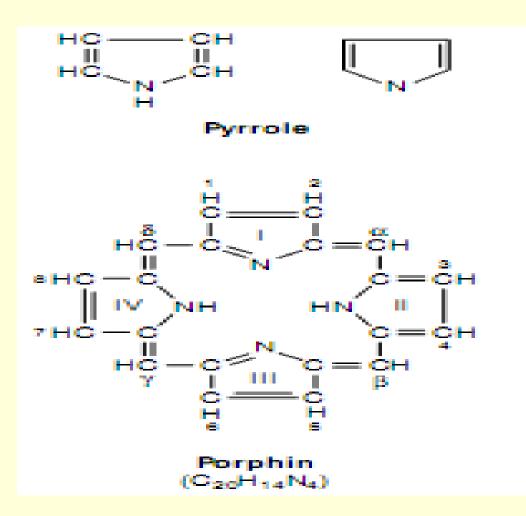
Amino acids, in addition to serving as building blocks for proteins, are precursors of many nitrogencontaining compounds that have important physiologic functions.

- These functions include:
- ✓ Porphyrins.
- ✓ Neurotransmitters.
- ✓ Hormones.
- ✓Purines.
- ✓ Pyrimidines.

- Porphyrins are cyclic compounds that readily bind metal ions, usually Fe²⁺ or Fe³⁺.
 - The most prevalent metalloporphyrin in humans is heme, which is the prosthetic group for:
- ≻Hemoglobin.
- ≻Myoglobin.
- ≻Cytochromes.
- ≻Catalase.
- ≻Tryptophan pyrrolase.

Table 31–1. Examples of Some Important Human and Animal Hemoproteins. 1

Protein	Function
Hemoglobin	Transport of oxygen in blood
Myoglobin	Storage of oxygen in muscle
Cytochrome c	Involvement in electron transport chain
Cytochrome P450	Hydroxylation of xenobiotics
Catalase	Degradation of hydrogen peroxide
Tryptophan pyrrolase	Oxidation of tryptophan


These hemeproteins are constantly being rapidly synthesized and degraded.

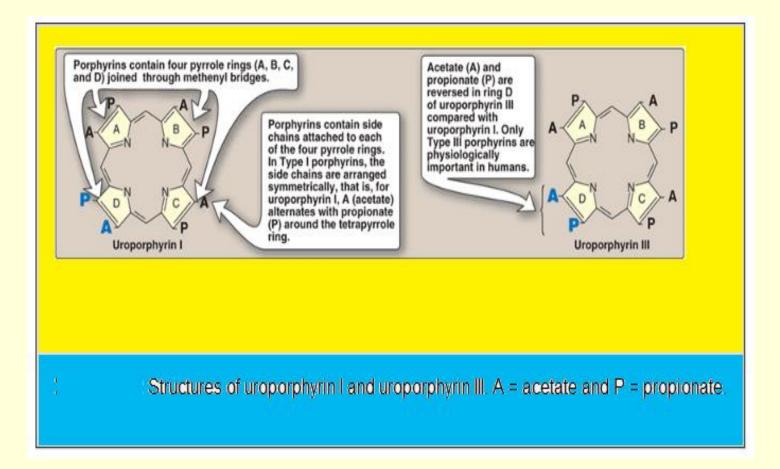
 For example, six to seven gm of hemoglobin are synthesized each day to replace heme lost through catabolism.

Structure of porphyrins

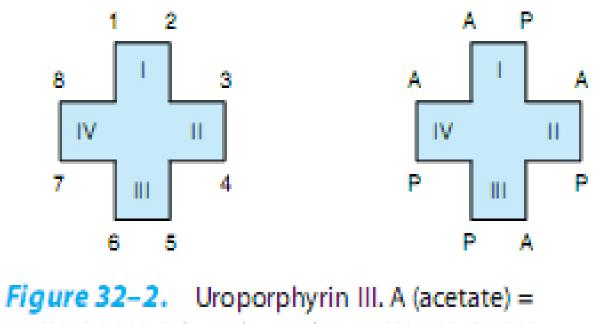
Ring structure:

The Porphyrins are complex structures consisting of 4 pyrrole rings united by "methenyl" bridges or (methylidene bridges) (A, B, C, D).

Side chains:


Different porphyrins vary in the nature of the side chains that are attached to each of the four pyrrole rings.

For example:


Uroporphyrin contains acetate (-CH2-COO-) and propionate (-CH2-CH2-COO-) side chains.

Coproporphyrin, shown at left, is substituted with methyl (-CH3) and propionate groups.

9 Por Phyrin * cyclic compound formed from 4 prole migs. (I, I, I & IZ) Combined type the Harough 4 methyline bridges (a, B, 878) H C-CH to the Gompound produced Burole from such 4 ponde mays is called -> " Por phin " * porphyrin damatins :-* if 8 hydrogen atoms replaced by Certain chanical Called perploy vin devications, I and produced as FMours: A-> CH2 Coll P=> CH2-CH2-GA Wroper phyrin I Grapor phyrin III > First esoluted from un IF etter Crett - 3> RH3 (M) Actic grap me pay group Cor a proporphymis are produced (ischard from stales M Cepto Por phyrin I Coproparphy nin III

if the propionic groups (nog I & I) of Copropor physis III - > decarba xyleteel ethy group produced -> forming mesoforthymi cthe-othe-God - > CH2-CH3 proprincing on ally group (E) if the etyl group are I oxidized - hydro sy etyl gungs -> produced and-Mesopor playnin II hanato por Phyris M is format . CH2 - CH3 - O CHE- CHE- OH (EOH) inducty etgl grap styl grap E-H 5 if the hydrest they and is delydrated _ Vingl graps and formed _ proto prophysis A EoH Hemato ctl 2- ctle- otl > ett=ctt2 vong (group (V) . Ivon Can be added Heme M Fe-Proto for (4 molecules & here Combras one of glipin - here leme > > hemoglobis

----CH₂COOH; P (propionate) = ---CH₂CH₂COOH.

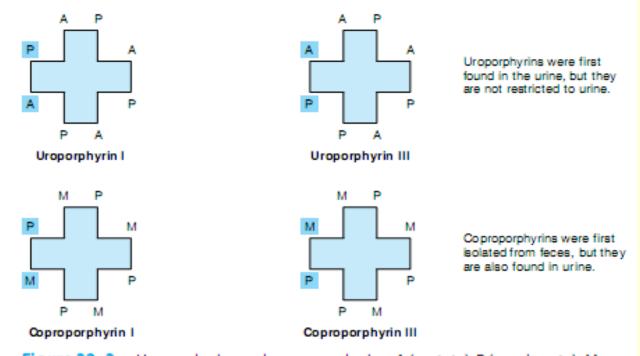
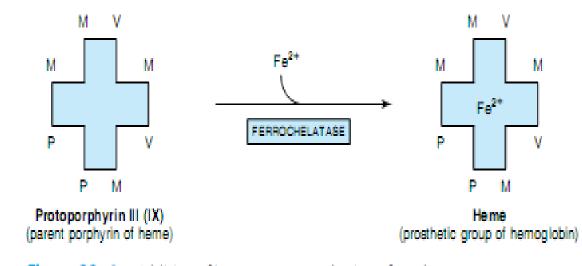
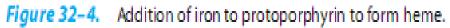
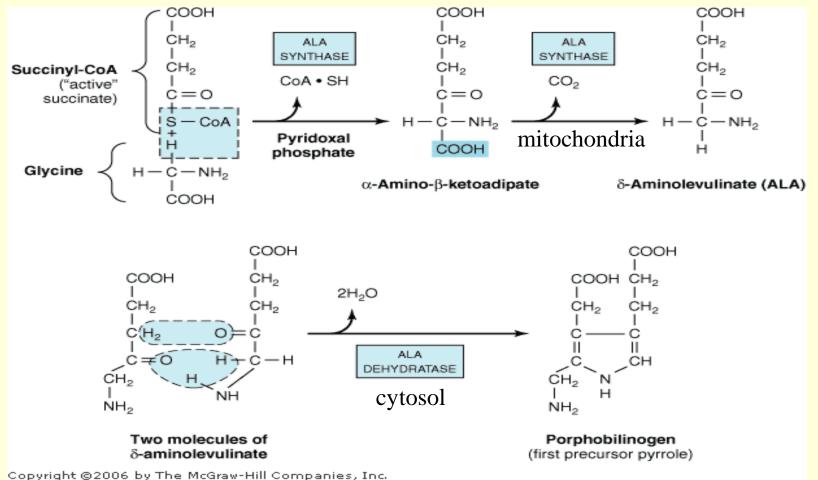




Figure 32–3. Uroporphyrins and coproporphyrins. A (acetate); P (propionate); M (methyl) = --CH₃; V (vinyl) = --CH₋₋CH₂.

P P 400, P P N N P P A P Uroporphyrin ogen I Coproporphyrin ogen I UROPORPHYRINOGEN DECARBOXYLASE P A IN N P 400₉ P P Uroporphyrinogen III Coproporphyrin ogen III

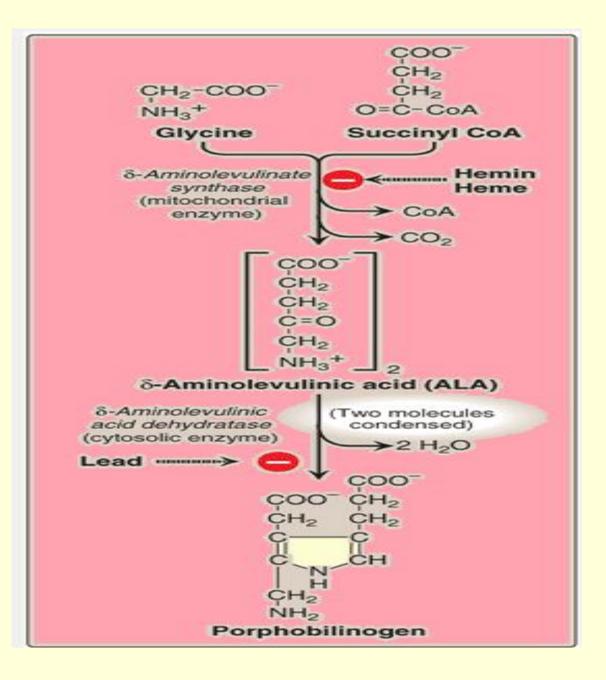
Figure 32-7. Decarboxylation of uroporphyrinogens to coproporphyrinogens in cytosol. (A, acetyl; M, methyl; P, propionyl.)



Biosynthesis of porphyrins

- Site:
- The major sites of heme biosynthesis are the liver.
- The Initial reaction and the last three steps in the formation of porphyrins occur in mitochondria.
- The <u>intermediate steps</u> of the biosynthetic pathway occur in the cytosol.
- Note: Mature red blood cells lack mitochondria and are unable to synthesize heme.

1. Formation of δ-aminolevulinic acid (ALA):


- All the carbon and nitrogen atoms of the porphyrin molecule are provided by two simple building blocks:
- 1. Glycine (a non essential amino acid).
- 2. Succinyl CoA (an intermediate in the citric acid cycle).
- ✓ Glycine and succinyl CoA condense to form ALA in a reaction catalyzed by ALA synthase.
- This reaction requires pyridoxal phosphate as a coenzyme.
- ✓ It is a rate-controlling step in porphyrin biosynthesis.

All rights reserved.

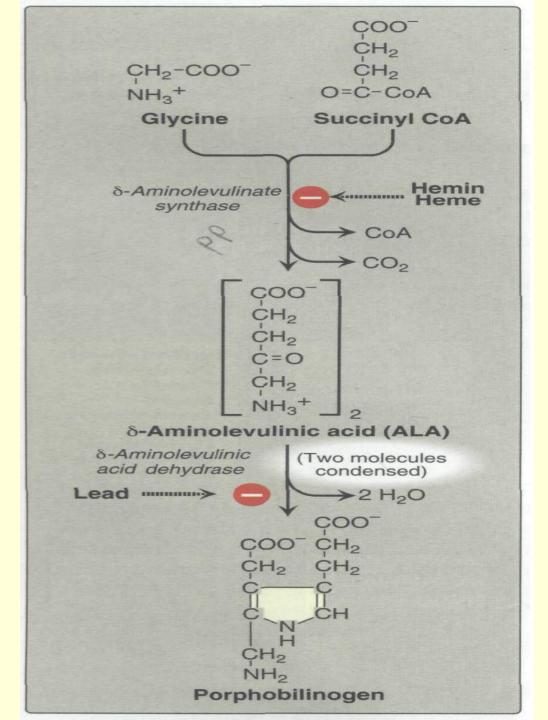
a. End product inhibition by hemin:

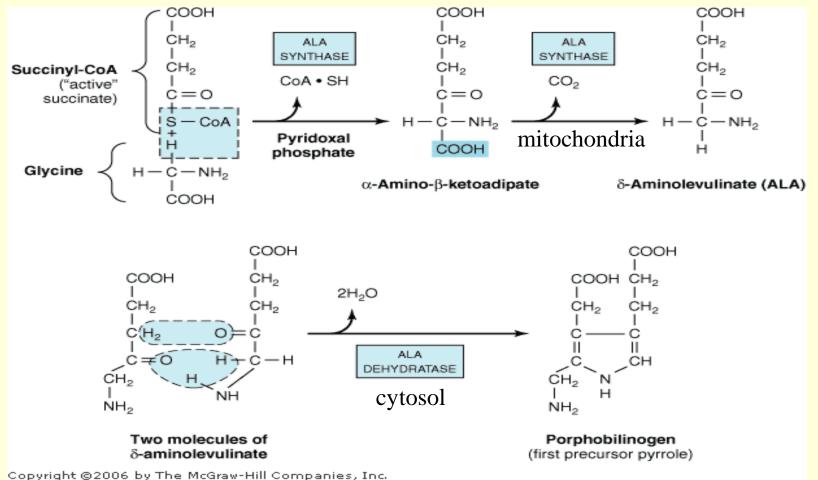
- The activity of ALA synthase is decreased by elevated concentrations of hemin, which is derived from heme by the oxidation of Fe2+ to Fe3+.
- When porphyrin production exceeds the availability of globin or other Apo proteins, heme accumulates and is oxidized to hemin.
- This end product inhibition causes the decreased synthesis of ALA synthase.

b. Effect of drugs on ALA synthase activity:

- Administration of drugs, such as phenobarbital, results in a marked increase in hepatic ALA synthase activity.
- These drugs are metabolized by microsomal cytochrome P450 mono-oxygenase system, a hemeprotein oxidase system found in the liver.

In response to these drugs the synthesis of cytochrome P450 increases, leading to an enhanced consumption of heme, a component of cytochrome P450.


This causes a decrease in the concentration of heme in liver cells.


The lower intracellular heme concentration leads to an increase in the synthesis of ALA synthase (derepression) and prompts a corresponding increase in ALA synthesis. 2. Formation of porphobilinogen:
The dehydration of two molecules of ALA to form porphobilinogen by δ-aminolevulinic acid dehydrase.

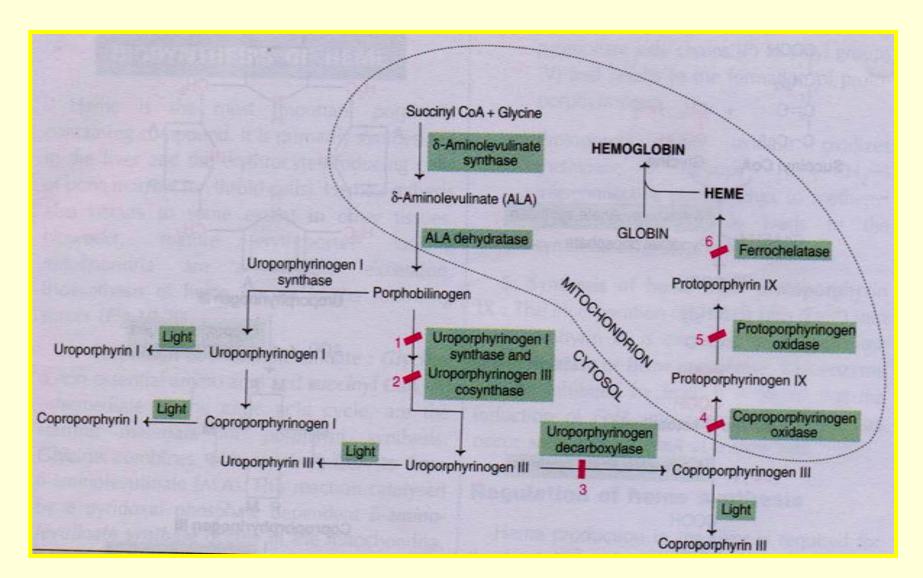
□It is inhibited by heavy metal ions like lead.

This inhibition is responsible for the elevation in ALA and the anemia seen in lead poisoning.

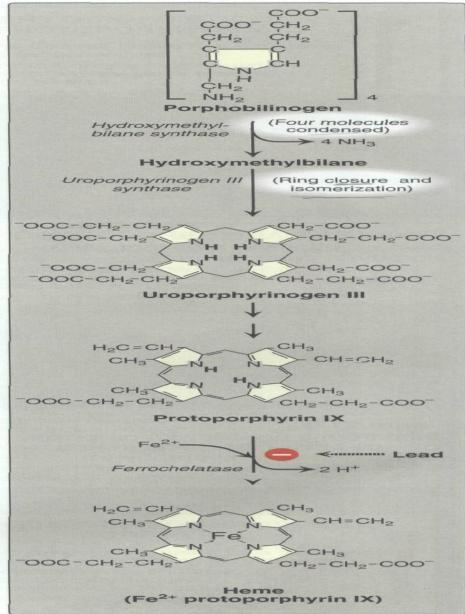
Hemoglebin educe globin n * globin is simple parton * having high historianie - 8 195-2 02 K Small amount of 150 bucher. COOH-CHE-CHE-GALCON + ATTE-CTER COOM SALA synchron of Par @ Co- Hermins CD0 H-CHE- CH3- C0- CH- C0a amino - B- Keto adipic acid Sife: Liver durived from home by Book- CB2-CH2-CE- CH2- NH2 S-amine landsing and (ALA) two molecules of SALA condense tegther with Loss of 2 molecules & Heo > the partnersons of and Parphysis derivative > por phobilinoge Netic 1-Coott Coult; Lead Could F CH2 gup Coolt 7~1 CHL 1ctt -2 120 CER in ESALA debug da ze (CHE). CHZ 670 UCH. Non-Cth - C 76)

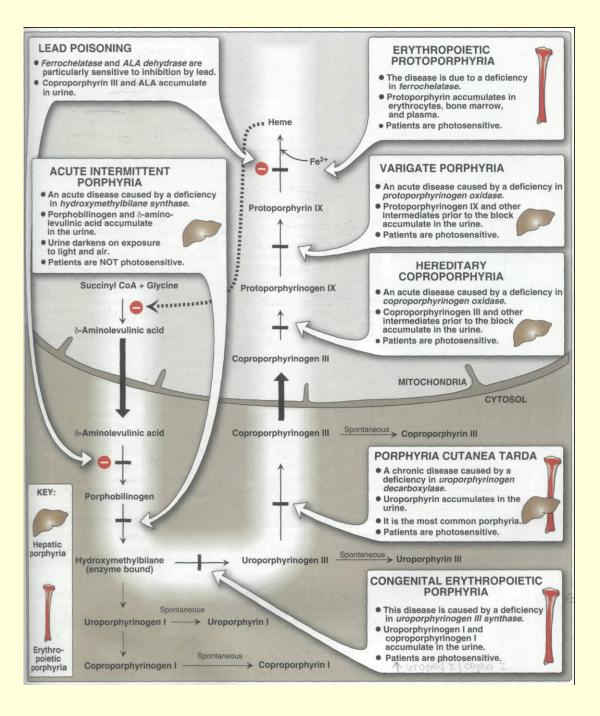
All rights reserved.

3. Formation of uroporphyrinogen:


The condensation of four molecules of porphobilinogen results in the formation of uroporphyrinogen III.

 The reaction requires uroporphyrinogen I synthetase (which form uroporphyrinogen I), and uroporphyrinogen III cosynthetase (which produces uroporphyrinogen III). 4. Formation of heme: Uroporphyrinogen III is converted by a series of heme to decarboxylations and oxidations. >The introduction of Fe2+ into protoporphyrin X occurs spontaneously, and the rate is enhanced by the enzyme ferrochelatase, (inhibited by lead).


inogens Condensa per 14, 9- weeks Une por phy nos I Waper physics 11 Cor of decorborsylation of actic grap Coproporplayvis 1 C2 C Copre par playrin I cor e rig ISI Hemo to Porplayin i the easy army 2Hu e delyder tom 2 by fag Mr Separphynia III proto Parphynin II -Henr 7.44 themegle lais glipin Catabolism of the (synthesis of bile pigment) * R.B. es is dyraded in not clearledte bol system particularly in liver & splan. (offer 120 dys). B Formation of bilirubin :. Hene , NADPHHI Macrophage Herry oxygenere system of RE Celly 3 vapp-LEK. G the engur add 1 Fe.3+ Valeered Biliverdin all deals you littlead resulting in brudge between production of green progrant APPH+H Proto mays - will o Kidutron of Frent to Biliverdin F34 . SNADP Yedu chazo 16 Ar 2nd · axidents by for sure engine * reduced forming parphy in clause red-orange project -> (Bilirubii


Glycine + Succinyl CoA ALA synthase PLP 4. Conversion of uroporphyrinogen to protoporphyrin IX: This is δ -Aminolevulonic Acid (ALA) ш catalysed by a series of reactions ALA Dehydrase Porphobilinogen Uroporphyrinogen *Synthase* **Uroporphyrinogen-III** Synthesis of heme 5. from protoporphyrin IX: The incorporation of ferrous iron (Fe²⁺) into protoporphyrin IX is **Protoporphyrin-IX** catalysed by the enzyme Fe²⁺ ferrochelatase. This enzyme is 5 Ferrocheletase inhibited by lead. HEME

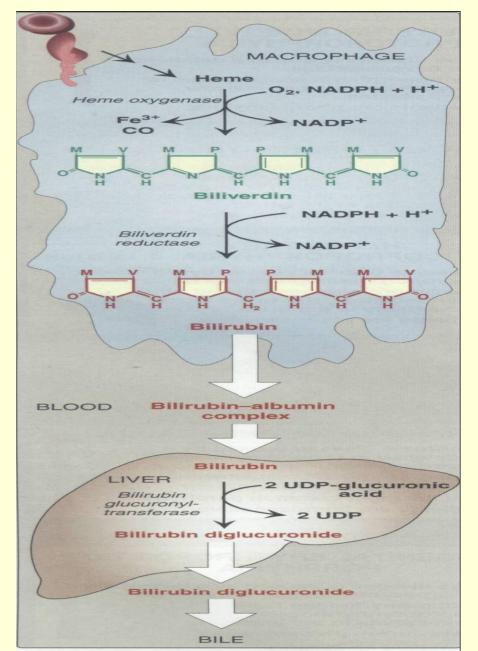
BIOSYNTHESIS OF HEME

Formation of heme

Glycine + Succinyl CoA ALA synthase δ -Aminolevulonic Acid (ALA) ALA Dehydrase Porphobilinogen Uroporphyrinogen Synthase **Uroporphyrinogen-III Protoporphyrin-IX** Fe²⁺ *Ferrocheletase* HEME

Degradation of heme

✓After 120 days in the circulation, red blood cells are degraded by the reticuloendothelial (RE) system, particularly in the liver and spleen.


Approximately 85% of heme destined for degradation comes from red blood cells, and 15% from turnover of immature red blood cells and cytochromes from extraerythroid tissues.

1. Formation of bilirubin

- I. The first step of degradation catalyzed by:
- Microsomal heme oxygenase system of the RE cells. In the presence of NADPH and O2.
- The enzyme adds a hydroxyl group to the methenyl bridge between two pyrrole rings with a concomitant oxidation of ferrous iron to Fe3+.

- II. A second oxidation by the same enzyme system results in cleavage of the porphyrin ring.
 - Ferric iron and carbon monoxide are released, resulting in production of green pigment biliverdin.
- Biliverdin is reduced, forming redorange bilirubin.
- Bilirubin and its derivatives are collectively termed bile pigments.

Formation of bilirubin from heme

linogens; Condensa per 14, 9- weeks Une por phy nos I Waper physics 11 Cor of decorborsylation of actic grap Coproporplayvis 1 C2 C Copre par playrin I cor e rig ISI Hemo to Porplayin W the easy army 2Hu e delyder tom 2 by fag Mr Separphynia II proto Parphynin II -Henr 7.44 themegle lais glipin Catabolism of the (synthesis of bile pigment) * R.B. Cs is degraded in not clearled bold system particularly in liver & splan. (offer 120 days). B Formation of bilirubin :. Hene , NADPHHI Macrophage Herry oxygenere system of RE Celly 3 vapp-LEK. G the engur add 1 Fe.3+ Valeered Biliverdin all deals the leftering resulting in brudge between production of green progrant APPH+H Proto mays - will o Kidutron of Frent to Biliverdin F34 . SNADP Yedu chazo 16 Ar 2nd · axidents by for sure engine * reduced forming parphy in clause red-orange project -> (Bilirubii

2. Uptake of bilirubin by the liver

- Bilirubin is slightly soluble in plasma and transported to the liver by binding to albumin (Bilirubin-Albumin Complex).
- Bilirubin dissociates from the carrier albumin molecule and enters a hepatocyte, it binds to intracellular proteins, called ligandin.

Biling bin - > Trans port the Lever by briding to abunin Car Moral forming -> Bilirabin- albumin cyle B. linutoni Bouch Bilirubin- albumin Complex > bilinchin dossociated from Connier albumin 8 enters a helatolytes - > which it binds to intracentular proteins. Called Ligandins 3) Formation of bilirubin diglucurenide: Bilinebin albumin apper 2 UDP- glulurme and > Zupp alucivoust pusters 20 Bilirubin dig leconside. a Excuetion of bilinebin into bile. Bilinchin dighe availe -> Trans port into be (5 Forma tron of two biling in the intesting Bilinebin diglucurande Moderated una hilinoge & reduced . Una hilingen by beckense some realisation from the gut into the portel blood t Oxide then by in testinel backino Converted wobilin Kidney struchilin - a created in unne give bor Clar + give unie to chardaste of stud

3. Formation of bilirubin diglucuronide

In the hepatocyte the solubility of bilirubin is increased by the addition of two molecules of glucuronic acid, catalyzed by bilirubin glucuronyltransferase using UDP-glucuronic acid as the glucuronate donor.

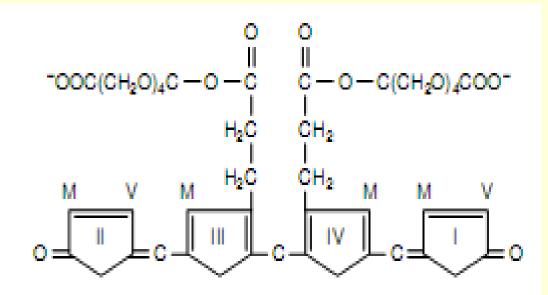
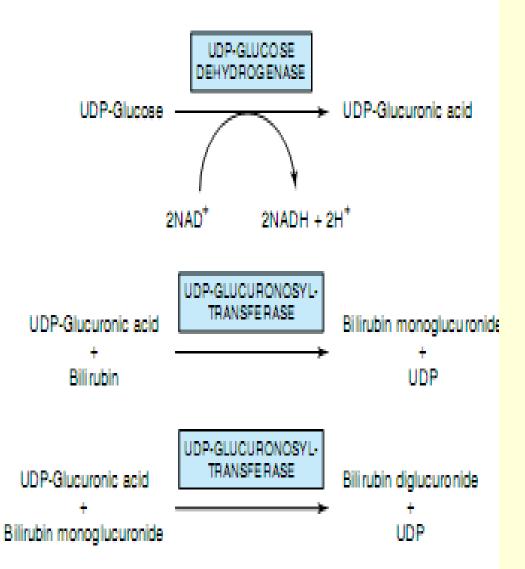



Figure 32–13. Structure of bilirubin diglucuronide (conjugated, "direct-reacting" bilirubin). Glucuronic acid is attached via ester linkage to the two propionic acid groups of bilirubin to form an acylglucuronide.

Figure 32–14. Conjugation of bilirubin with glucuronic acid. The glucuronate donor, UDP-glucuronic acid, is formed from UDPglucose as depicted. The UDP-glucuronosyltransferase is also called bilirubin-UGT.

4. Excretion of bilirubin into bile

- Bilirubin diglucuronide is actively transported into the bile canaliculi and then into the bile.
- Unconjugated bilirubin is normally not excreted.

5. Formation of urobilins in the intestine

- Bilirubin diglucuronide hydrolyzed and reduced by bacteria in the gut to a colorless compound urobilinogen.
- A. Some urobilinogen is reabsorbed from the gut into portal blood and transported to the kidney where it is converted to the yellow urobilin and excreted, giving urine its characteristic color.
- B. Most of urobilinogens of the feces are oxidized by intestinal bacteria to stercobilin which gives stools their characteristic brown color.

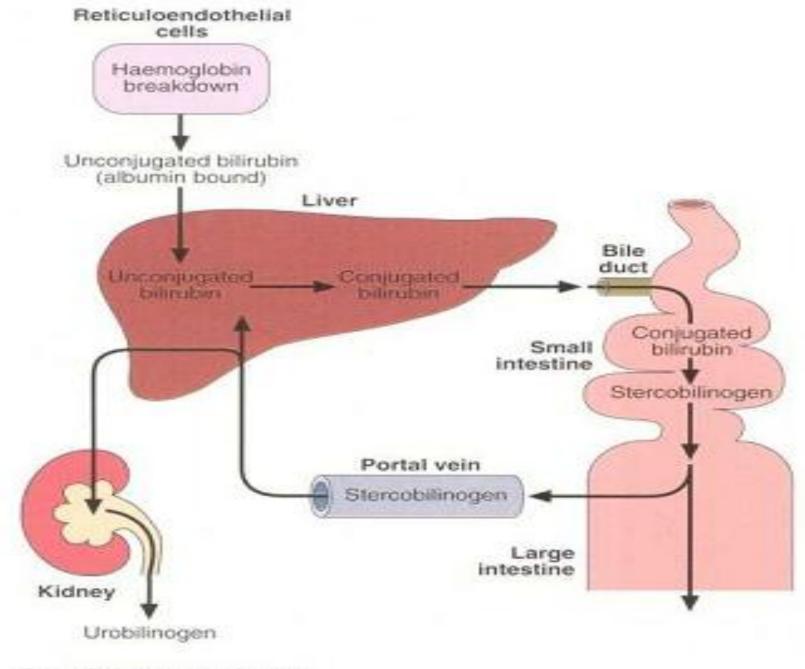
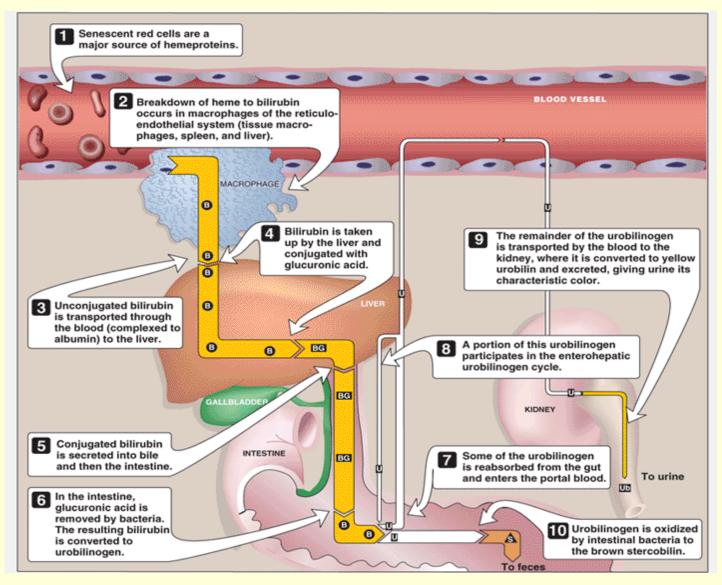



Fig. 2 Biliruhin metaholism

Catabolism of heme

